請勿攜去 Not to be taken away

香港中文大學 The Chinese University of Hong Kong

<u>版權所有 不得翻印</u> Copyright Reserved

二零二二至二三年度上學期科目考試

Course Examination 1st Term, 2022-23

科目編號及名稱 Course Code & Title	:	MATH2058	Honour	s Mathema	tical Analysis I	
時間 Time allowed	:	2	小時 hours	00	分鐘 minutes	
學號				座號		
Student I.D. No.	:	Seat No. :				

Answer ALL Questions

1. Let $h: (0,\infty) \longrightarrow \mathbb{R}$ be a function satisfying $\lim_{t \to 0+} \frac{h(t)}{t} = 0$. Define a function $\varphi: (0,1) \to \mathbb{R}$ by

$$\varphi(x) = \begin{cases} ph(\frac{1}{q}) & \text{if } x = \frac{p}{q}, \ p, q \text{ are relatively prime positive integers;} \\ 0 & \text{otherwise.} \end{cases}$$

- (i) Show that for every $\varepsilon > 0$, the set $N(\varepsilon) := \{x \in (0,1) : |\varphi(x)| \ge \varepsilon\}$ is finite.
- (ii) Show that the function φ is continuous at every irrational point in (0, 1).

2. For each $x = (x_1, ..., x_m) \in \mathbb{R}^m$, put $||x|| := \sqrt[2]{x_1^2 + \cdots + x_m^2}$. Now \mathbb{R}^m is endowed with the usual metric, i.e., the distance between the elements x and y in \mathbb{R}^m is given by ||x - y||. Let $q(x) := \sqrt[3]{|x_1|^3 + \cdots + |x_m|^3}$ and let A be the set $\{x \in \mathbb{R}^m : q(x) = 1\}$.

- (i) Show that the set A is compact.
- (ii) Show that there are $c_1, c_2 > 0$ such that $c_1q(x) \le ||x|| \le c_2q(x)$ for all $x \in \mathbb{R}^m$.
- 3. Prove or disprove the following statements.

(i) There is a continuous function f defined on the set $A := \bigcup_{n=1}^{\infty} \left[\frac{1}{2n+1}, \frac{1}{2n} \right] \cup \{0\}$ so that the image of f is the set $\{\frac{1}{n} : n = 1, 2, ...\}$.

- (ii) For every positive integer n, there is a continuous real valued function g defined on $D := (0, 1) \cap \mathbb{Q}$ so that the image of g is $\{1, 2, ..., n\}$
- 4. Let A be a non-empty subset of \mathbb{R} . For a function $f : A \longrightarrow \mathbb{R}$, put $\omega_f(t) := \sup\{|f(u) f(v)| : u, v \in A; |u v| < t\}$ provided the supremum exists for some t > 0.
 - (i) Show that if there is c > 0 such that $\omega_f(t) \le ct$, for all t > 0, then f is uniformly continuous on A.
 - (ii) Let f be a function defined on [0,1] given by $f(x) := x \sin \frac{1}{x}$ for $x \in (0,1]$ and f(0) = 0. Use the function f to show that the converse of Part (i) does not hold.